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Abstract A boundary-integral method is developed for computing the interception of two spherical drops with
arbitrary radii and viscosities in infinite linear Stokes flow. At any instant, the flow is computed in a frame of
reference with origin at the center of one drop, using a cylindrical polar coordinate system whose axis of revolution
passes through the center of the second drop. Taking advantage of the axial symmetry of the interfaces in the drop
coordinates, the problem is formulated as a system of integral equations for the zeroth, first, and second Fourier
coefficients of the normal component of the jump in the interfacial traction and for the meridional and azimuthal
components of the interfacial velocity with respect to the meridional angle. The integral equations are solved with
high accuracy using a boundary-element method featuring adaptive boundary-element distribution and automatic
time-step adjustment according to the interfacial gap. Simulations of two drops intercepting in uniaxial straining
flow provide accurate data on the drop collision velocity and particle stress tensor for gaps as small as 10−4 times
the drop radius. Simulations of two drops intercepting in simple shear flow confirm that slightly offset drops collide
during the interception. Accurate data are presented for Batchelor’s relative mobility functions in linear Stokes flow
used to describe the relative droplet motion.

Keywords Boundary-integral method · Bubbles · Drops · Stokes flow

1 Introduction

Small droplets and bubbles suspended in an ambient liquid are common constituents of biological, industrial, and
environmental fluids. Numerous studies of droplet and bubble motion have been conducted in order to assess the
nature and magnitude of the flow-induced deformation in shear and elongational flow; establish thresholds for
breakup; illustrate particle trajectories; determine the motion near boundaries; investigate the process of sedimenta-
tion; determine the collision efficiency and thereby assess the stability of the suspended phase under a broad range
of flow conditions. In recent years, droplet and bubble motion has received considerable attention due to potential
applications in microfluidics.

Because droplets and bubbles encountered in practice are typically small, the flow around them occurs at small
Reynolds numbers even in the case of a turbulent ambient flow. The hydrodynamic interaction of particles, liquid
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354 C. Pozrikidis

drops, and gas bubbles in Stokes flow has been investigated extensively by asymptotic and numerical methods,
as reviewed by Kim and Karrila [1]. Batchelor and Green [2,3] discussed the motion of two freely suspended
spherical particles in infinite linear flow and developed asymptotic and numerical solutions for remote and nearly
touching particles. Zinchenko [4–7] studied the interaction of two closely spaced spherical drops and investigated
the rheological properties of a dilute suspension. Zhang and Davis [8] derived analytical expressions for the mobility
functions of two remote drops and presented numerical results for arbitrary separations. Wang et al. [9] combined
these results into a highly accurate scheme that allowed them to integrate the equations governing the relative drop
motion, and thus determine the droplet collision efficiency by trajectory analysis in uniaxial straining and simple
shear flow. Fuentes et al. [10,11] developed asymptotic expansions for the mobility of a small drop near a larger
drop. Other authors have conducted numerical simulations of drop interception by boundary-element methods, as
reviewed by Zinchenko and Davis [12]. While these methods are powerful when significant deformation occurs,
the governing equations become extremely stiff in the limit of vanishing deformation where surface tension plays
a dominant role.

The capillary number is a dimensionless parameter expressing the relative importance of the deforming hydro-
dynamic stresses and the restoring capillary stresses due to surface tension,. The assumption of spherical bubble and
drop interfaces is accurate in the limit of zero capillary number and when the drop or bubble interfaces are separated
by a sufficiently large gap. When the minimum separation becomes comparable to the capillary number, interfacial
deformation occurs yielding a two-sided dimple that may prevent collision leading to coalescence. In the absence
of interfacial deformation, spherical interfaces make contact at a finite time provided that the contact force pressing
the drops against each another is sufficiently strong and persist for a sufficiently long period of time. Zinchenko
and Davis [12] pointed out that the condition of small capillary number does not generally warrant the neglect
of deformation. The reason is that interfacial deflection acts as a singular perturbation preventing the interfaces
from touching in the absence of attractive intermolecular force fields. In the case of two drops pressing against
one another in an axisymmetric uniaxial elongational flow, interfacial deformation has been shown to undoubtedly
prevent collision. Recent boundary-integral computations [12] have confirmed that this is also true in the case of
drops intercepting obliquely in simple shear flow. The numerical results have shown that the minimum interfacial
gap developing during the strong interaction and near-collision phase scales with a positive power of the capillary
number. However, the effect of interfacial deformation becomes irrelevant in the limit of zero capillary numbers
where attractive intermolecular forces of non-hydrodynamic origin cause spherical interfaces to coalescence for
sufficiently small gaps. The study of spherical drops and bubbles is relevant to microfluidics where the capillary
number is miniscule.

In this paper, a boundary-integral method is developed for computing the motion of two spherical liquid drops
suspended in infinite linear Stokes flow, in the limit of zero capillary number. Given the instantaneous relative drop
position, we compute the flow in a frame of reference with origin at the center of one drop using a cylindrical polar
coordinate system whose axis of revolution passes through the center of the second drop. The problem is formulated
as a system of integral equations for the zeroth, first, and second Fourier coefficients of the normal component of
the interfacial traction jump and interfacial velocity with respect to the meridional angle. The integral equations are
solved with high accuracy using a boundary-element method featuring adaptive element distribution and automatic
time-step adjustment according to the interfacial gap. The results are in excellent agreement with those obtained
previously by Zinchenko, Davis and coworkers using functional expansion and asymptotic methods for large and
small separations, and provide an alternative venue for describing the motion of drops consisting of the same or
different fluids.

2 Problem statement and mathematical formulation

We consider slow viscous flow past two neutrally buoyant liquid drops suspended in an effectively infinite ambient
fluid, as shown in Fig. 1. The ambient fluid is denoted by the index 1, the first drop is denoted by the index 2, and
the second drop is denoted by the index 3. Far from the drops, the velocity obtains the linear form
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Interception of two spherical drops 355

Fig. 1 Two spherical drops
with arbitrary radii intercept
in a linear flow; (X , Y , Z )
are the global coordinates
fixed at the laboratory
frame, (x , y, z) are particle
doublet coordinates,
(r, θ, ϕ) are corresponding
spherical polar coordinates,
and (x , σ , ϕ) are cylindrical
polar coordinates attached
to one drop

X
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U∞(X) = LT · X, (2.1)

where L = ∇U∞ is the velocity gradient tensor, the superscript T denotes the matrix transpose, X is the position
vector, and U is the velocity in laboratory-fixed coordinates. The equivalent spherical radius of the first drop is
R = a and the equivalent spherical radius of the second drop is R = δa, where δ is the radius ratio; both are defined
such that the volume of each drop is 4π

3 R3. Without loss of generality, we will assume that the first drop is larger
than the second drop, δ ≤ 1.

The Reynolds number of the flow around the drops is defined as Re = Uaρ1/µ1, where U is a characteristic
velocity, ρ is the density, and µ is the viscosity. In physical applications of interest, the Reynolds number is so small
that the flow is governed by the linear equations of Stokes flow, including the Stokes equation and the continuity
equation,

− ∇ P + µi ∇2U = 0, ∇ · U = 0, (2.2)

for i = 1, 2, 3, where P is the dynamic pressure incorporating hydrostatic variations. The velocity is continuous
across the interface of each drop, but the interfacial traction undergoes a discontinuity determined by the surface
tension, γ ,

�F ≡ �� · N = 2κmγ N, (2.3)

where � is the Newtonian stress tensor, N is the unit vector normal to the drop surface pointing into the ambient
fluid, κm is the mean curvature reckoned to be positive for a sphere, and �q ≡ q1 − qi denotes the interfacial jump
of a generic variable q, for i = 2, 3. To simplify the notation, we have assumed that the interfaces exhibit the same
surface tension.

2.1 Asymptotics for small capillary numbers

It is useful to decompose the velocity and pressure fields in each fluid into a capillary component (C), a base
component (B), and a disturbance component (D),

U = UB + UD, P = PC + P B + P D . (2.4)

123



356 C. Pozrikidis

Outside the drops, the capillary component vanishes and the base component represents the incident linear flow,

pC,1 = 0, UB,1 = U∞, pB,1 = P0, (2.5)

where P0 is a constant ambient pressure. Inside the first drop, the capillary pressure is given by Laplace’s law for a
spherical drop, and the base component represents the continuation of the incident shear flow,

PC,2 = 2
γ

a
, UB,2 = µ1

µ2
U∞, P B,2 = P0. (2.6)

Similar expressions are written for the second drop,

PC,3 = 2
γ

δa
, UB,3 = µ1

µ3
U∞, P B,3 = P0. (2.7)

Corresponding base and disturbance velocity and pressure fields satisfy the equations of unforced Stokes flow. Near
the drops, the base and disturbance flows have comparable magnitudes. When the fluid viscosities are different, the
base velocity field is discontinuous across the drop interfaces. In contrast, the base stress field is spatially uniform
and continuous throughout the domain of flow, irrespective of the fluid viscosities. The stress field associated with
the capillary pressure undergoes a discontinuity across the interfaces.

We confine our attention to situations where the surface tension is strong enough to prevent significant deforma-
tion of the interfaces from the spherical shape against the deforming action of the stresses imparted by the incident
flow. The formal requirement is that the capillary number, Ca = µ1U/γ , is sufficiently small. The disturbance
velocity and stress fields can be expanded in perturbation series with respect to Ca whose leading terms are

U = UB + UD(0) + Ca UD(1), � = �C + �B + �D(0) + Ca �D(1). (2.8)

The isotropic capillary stress tensor, �C is defined with respect to the capillary pressure of the spherical drops.
The surface of each drop can be described by the similar asymptotic expansion

r

R
= 1 + Ca φ(θ, ϕ), (2.9)

where r is the distance from the drop center, the dimensionless function φ(θ, ϕ) describes the deformed shape to
leading order with respect the capillary number, and (r, θ, ϕ) comprises a system of spherical polar coordinates
attached to each drop, as shown in Fig. 1. The unit vector normal to the drop surfaces can be expanded in a similar
fashion as

N = er + Ca N(1), (2.10)

where er is the radial unit vector, and the superscript (1) signifies ordering with respect to the capillary number.
Requiring |N|2 = N · N = 1 and substituting (2.10) yields er · N(1) = 0 to first order in the capillary number, which
shows that N(1) is a tangential but not a unit vector. Now substituting F = r − R [1 + Ca φ(θ, ϕ) ] in the expression
for the normal vector, N = ∇F/|∇F |, and linearizing with respect to Ca, we find N(1) = −∇φ.

The mean curvature of a drop interface can be similarly expanded with respect to the capillary number,

κm = 1

R
+ Ca κ(1)

m , (2.11)

where

κ(1)
m = − 1

2R

(
2φ + cot θ

∂φ

∂θ
+ ∂2φ

∂θ2 + 1

sin2 θ

∂2φ

∂ϕ2

)
; (2.12)

e.g., [13, p. 162]. If the first-order curvature, κ
(1)
m , is known, this expression provides us with a partial differential

equation for the interfacial deformation, φ(θ, ϕ).
In a frame of reference translating with the drop velocity, V, the spherical drop surface appears stationary and

the relative normal velocity is zero. Substituting the perturbation expansions for the velocity and normal vector in
the interfacial condition U · N = V · N, we find

(UB + UD(0)) · er = V · er (2.13)
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Interception of two spherical drops 357

evaluated on either side of the undeformed interface, r = R, with an error on the order of Ca.
Next, we consider the dynamic interfacial condition �� · N = 2κm γ N. Substituting the perturbation expansion

for the stress and noting that ��B = 0, we find

2
γ

R
N + ��D(0) · N = 2κm γ N, (2.14)

with an error on the order of Ca. Substituting the asymptotic expansions for the normal vector and mean curvature,
and expressing the surface tension in terms of the capillary number on the right-hand side, we find

�FD(0) ≡ ��D(0) · er = 2µ1U κ(1)
m er , (2.15)

with an error on the order of Ca, where all terms are evaluated at the position of the unperturbed interface, r = R.
The normal and tangential components of the jump in the interfacial traction are

�F D(0)
r ≡ �FD(0) · er = 2µ1Uκ(1)

m , er × �FD(0) × er = 0. (2.16)

To leading order, the force exerted on each drop is

F =
∫∫

D

� f D(0)
r er dS, (2.17)

where the integration is performed over the spherical interface. In the case of freely suspended drops, the drop
velocity, V, should be such that the force is zero. The torque with respect to the center of the spherical drop is
identically zero.

The motion of the center of the drop, Xc, is governed by the ordinary differential equation

dXc

dt
= V. (2.18)

Similar equations can be written for the second drop.
We have formally derived Taylor’s [14] boundary conditions for the normal component of the velocity of the

leading-order flow, and demonstrated that the tangential components of the leading-order traction is zero over the
spherical interfaces. This kinematic condition replaces the usual dynamic condition requiring that the normal com-
ponent of the jump in traction is balanced by the capillary force due to surface tension. In addition, we have derived
an expression for the normal component of the leading-order traction in terms of the first-order mean curvature,
κ

(1)
m .

The computational task has been reduced to solving the Stokes flow problem for the tangential velocity compo-
nents and jump in the normal component of the traction across the interfaces. Once this has been accomplished, the
first-order curvature, κ(1)

m , can be recovered from the normal interfacial force balance, and the first-order correction
to the interfacial shape can be computed by solving the differential equation

2φ + cot θ
∂φ

∂θ
+ ∂2φ

∂θ2 + 1

sin2 θ

∂2φ

∂ϕ2 = − R

µ1U
�F D(0)

r , (2.19)

where the left-hand side is a known. A solution of the homogeneous equation expressing translation along the
X -axis is φ = cos θ . Solutions of the homogeneous equation expressing translation along the Y - or Z -axis are
φ = sin θ cos ϕ and φ = sin θ sin ϕ.

The superscript (0) is now suppressed, and the disturbance flow is tacitly identified with its leading-order com-
ponent.

2.2 Drop doublet coordinates

It is convenient to recast the problem into a standard form by introducing a new coordinate system, (x, y, z), with
origin at the center of the first drop, X(1)

c . The x-axis passes through the centers of the two drops, and the y- and
z-axes point in two orthogonal but otherwise unspecified directions. Thus, defining the particle coordinate system
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affords one degree of freedom. The position vector, x, and velocity, u, in the particle coordinates transform according
to the equations

X = X(1)
c + A · x, U = A · u. (2.20)

A is an orthogonal transformation matrix whose columns are the direction cosines of the unit vectors along the x ,
y, and z-axes,

A =
⎡
⎣ (ex )X (ey)X (ez)X

(ex )Y (ey)Y (ez)Y

(ex )Z (ey)Z (ez)Z

⎤
⎦ ≡

⎡
⎣ AX x AX y AXz

AY x AY y AY z

AZ x AZ y AZz

⎤
⎦, (2.21)

where

ex = X(2)
c − X(1)

c

|X(2)
c − X(1)

c |
, ei · e j = δi j . (2.22)

Applying the velocity transformation rules for the incident linear flow, we derive an expression for the velocity in
the particle-fixed coordinates,

u∞(x) = AT · LT · X = AT · LT · (X(1)
c + A · x), (2.23)

which can be restated as

u∞(x) = v∞ + MT · x, (2.24)

where

v∞ = AT · LT · X(1)
c , M = AT · L · A. (2.25)

The matrix M is the velocity gradient tensor in the particle-fixed coordinates. The orthogonality of the matrix A
ensures that the trace of M is zero.

Next, we introduce cylindrical polar coordinates (x, σ, ϕ) complementary to the working spherical polar coor-
dinates shown in Fig. 1, where σ is the distance from the x-axis, and the meridional angle ϕ is defined such that
y = σ cos ϕ and z = σ sin ϕ. The kinematic boundary condition (2.13) on the surface of each drop requires

ur = AT · V · n = v · n ≡ vr (2.26)

evaluated at the drop surface, where v is the drop center velocity in the particle-fixed coordinates. Substituting the
Cartesian components of the normal vector over the spherical interfaces in the kinematic boundary condition (2.26),

n = [nx , nσ cos ϕ, nσ sin ϕ], (2.27)

we find

u = (vx nx + vynσ cos ϕ + vznσ sin ϕ) er + uθ eθ + uϕ eϕ, (2.28)

where uθ is the velocity component in the direction of the azimuthal unit vector, eθ , and uϕ is the velocity component
in the direction of the meridional unit vector, eϕ . In terms of cylindrical polar unit vectors,

u = (vx nx + vynσ cos ϕ + vznσ sin ϕ) (nx ex + nσ eσ ) + uθ (−nσ ex + nx eσ ) + uϕ eϕ, (2.29)

where eσ is the unit vector normal to the x-axis. Rearranging, we derive the interfacial conditions

ux = nx (vx nx + vynσ cos ϕ + vznσ sin ϕ) − uθ nσ ,

uσ = nσ (vx nx + vynσ cos ϕ + vznσ sin ϕ) + uθ nx ,
(2.30)

involving the drop center velocity and the azimuthal component of the fluid velocity, uθ . A continuity condition is
imposed on the meridional component of the interfacial velocity, uϕ .

The jump in the traction across each interface, f ≡ σ · n, can be resolved into its spherical polar components,
�f = � fn n + � fθ eθ + � fϕ eϕ , where σ is the stress tensor in the particle coordinates, � fθ is the component in
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the direction of the unit vector, eθ , and � fϕ is the component in the direction of the unit vector eϕ . In cylindrical
polar coordinates,

�f = � fn (nx ex + nσ eσ ) + � fθ (−nσ ex + nx eσ ) + � fϕ eϕ. (2.31)

The equations of (2.16) provide us with expressions for the normal and tangential components of the jump in the
disturbance interfacial traction,

� f D
n ≡ �f D · n = 2µ1Uκ(1)

m , � f D
θ = 0, � f D

ϕ = 0. (2.32)

In summary, the interfacial distributions of uθ , uϕ , and � f D
n must be found as part of the solution, and the drop

center velocity must be computed to ensure a specified particle force.
The motion of the center of each drop in the laboratory frame, Xc, is governed by the ordinary differential

equation

dXc

dt
= A · v. (2.33)

If the drop center velocity is available, this equation can be integrated in time using a standard numerical method.

2.3 Fourier expansions

A key observation is that the boundaries of the flow, but not the flow itself, are axially symmetric with respect to
the x-axis. This geometrical property allows us to simplify the problem by expressing the cylindrical or spherical
polar components of all variables of interest in Fourier series with respect to the meridional angle, ϕ.

We begin by expressing the cylindrical polar components of the incident linear flow as a five-term Fourier series,⎡
⎣ u∞

x
u∞

σ

u∞
ϕ

⎤
⎦ =

⎡
⎢⎣

v∞
x + M11x

1
2 (M22 + M33) σ

1
2 (M23 − M32) σ

⎤
⎥⎦ +

⎡
⎣ M21 σ

v∞
y + M12 x

v∞
z + M13 x

⎤
⎦ cos ϕ +

⎡
⎣ M31 σ

v∞
z + M13 x

−v∞
y − M12 x

⎤
⎦ sin ϕ

+1

2

⎡
⎣ 0

(M22 − M33) σ

(M23 + M32) σ

⎤
⎦ cos 2ϕ + 1

2

⎡
⎣ 0

(M23 + M32) σ

(−M22 + M33) σ

⎤
⎦ sin 2ϕ. (2.34)

Motivated by these forms, we express the cylindrical or spherical polar components of the velocity field as truncated
Fourier series,

uα(x, σ, ϕ) = Uα0(x, σ ) +
2∑

m=1

[Uc
αm(x, σ ) cos(mϕ) + U s

αm(x, σ ) sin(mϕ)], (2.35)

where Greek indices take the values x , σ , ϕ, θ , r , and Uα0, Uc
αm and U s

αm are Fourier coefficients.
Comparing the interfacial conditions (2.30) with (2.35), we derive boundary conditions for the constant velocity

Fourier coefficients,

Ux0 = n2
x vx − nσ Uθ0, Uσ0 = nx (nσ vx + Uθ0), (2.36)

first-order velocity Fourier coefficients,

Uc
x1 = nσ (nxvy − Uc

θ1), Uc
σ1 = n2

σ vy + nx Uc
θ1,

U s
x1 = nσ (nxvz − U s

θ1), U s
σ1 = n2

σ vz + nx U s
θ1,

(2.37)

and second-order velocity Fourier coefficients,

Uc
x2 = −Uc

θ2 nσ , Uc
σ2 = Uc

θ2 nx , U s
x2 = −U s

θ2 nσ , U s
σ2 = U s

θ2 nx . (2.38)

These expressions allow us to compute the coefficients Uxm and Uσm in terms of the drop center velocity, v, and
azimuthal coefficients, Uθm . Boundary conditions for the meridional coefficients Uϕm are not available.
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Working in a similar fashion, we express the cylindrical polar components of the jump in the disturbance inter-
facial traction in a truncated Fourier series,

� f D
α (x, ϕ) = �Fα0(x, σ ) +

2∑
m=1

[�Fc
αm(x) cos(mϕ) + �F s

αm(x) sin(mϕ)], (2.39)

where �Fα0, �Fc
αm , and �F s

αm are corresponding Fourier coefficients. The Cartesian components of the force
exerted on each drop surface, D, are given by

Fx =
∫∫
D

� f D
x dS = 2π

∫
C

�Fx0 σ dl,

Fy =
∫∫
D

(� f D
σ cos ϕ − � f D

ϕ sin ϕ) dS = π

∫
C

(�Fc
σ1 − �F s

ϕ1) σ dl, (2.40)

Fz =
∫∫
D

(� f D
σ sin ϕ + � f D

ϕ cos ϕ) dS = π

∫
C

(�F s
σ1 + �Fc

ϕ1) σ dl,

where C is the contour of the drop surface in a meridional plane, and l is the arc length along C . It is remarkable
that the force depends only on the zeroth and first Fourier coefficients and is independent of the second Fourier
coefficients.

The interfacial boundary conditions require �Fθm = 0 and �Fϕm = 0, yielding the simplified expressions

Fx = 2π

∫
C

�Fx0 σ dl, Fy = π

∫
C

�Fc
σ1 σ dl, Fz = π

∫
C

�F s
σ1 σ dl. (2.41)

Over the drop surface, the cylindrical polar components are related to the radial spherical polar component of the
jump in the interfacial traction by

�Fxm = nx �Frm, �Fσm = nσ �Frm, �Fϕm = 0, (2.42)

for m = 0, 1, 2. Thus, the Cartesian components of the force exerted on each drop are given by

Fx = 2π

∫
C

�Fr0 nx σ dl, Fy = π

∫
C

�Fc
r1 nσ σ dl, Fz = π

∫
C

�F s
r1 nσ σ dl. (2.43)

3 Boundary-integral formulation

The governing equations will be solved in the particle-fixed coordinates using the boundary-integral formulation
for Stokes flow. As a preliminary, we introduce the single- and double-layer potential of Stokes flow defined over
a generic surface, R,

S j (x0, f;R) ≡
∫∫
R

fi (x) Gi j (x, x0) dS(x),

D j (x0, u;R) ≡
∫∫
R

ui (x) Ti jk(x, x0) nk(x) dS(x),
(3.1)

where

Gi j (x, x0) = δi j

r
+ x̂i x̂ j

r3 , Ti jk(x, x0) = −6
x̂i x̂ j x̂k

r5
, (3.2)

are the free-space Green’s function and associated stress tensors, x̂ = x − x0, r = |x̂|, and δi j is Kronecker’s delta;
e.g., [15, Chap. 3].

123



Interception of two spherical drops 361

The disturbance velocity at a point x0 that lies in the ambient fluid can be expressed in terms of integrals over
the drop interfaces, D1 and D2,

8πµ1uD(x0) = −S(x0, f D1;D1,D2) + µ1 D(x0, uD1;D1,D2), (3.3)

where the superscript D1 denotes the disturbance flow on the side of the ambient fluid. The reciprocal theorem for
the flow in the interior of each drop applied at the same point x0 outside the drops requires

−S(x0, f D2;D1) + µ2D(x0, uD2;D1) = 0, −S(x0, f D3;D2) + µ3D(x0, uD3;D2) = 0, (3.4)

where the superscripts D2 and D3 denote the disturbance flow on the side of the drops. Combining these equations
to formulate the jump in traction across the interfaces, we find

8πµ1 uD(x0) = −S(x0,�f D;D1,D2) + D(x0, µ1uD1 − µ2uD2;D1) + D(x0, µ1uD1 − µ3uD3;D2). (3.5)

Continuity of velocity across the first drop interface requires

uB1 + uD1 = uB2 + uD2 = µ1

µ2
uB1

1 + uD2 , (3.6)

and thus

µ2 uD2 = (µ2 − µ1) uB1 + µ2 uD1 = (µ2 − µ1) u + µ1 uD1 . (3.7)

Substituting this expression and a similar expression for the second interface in the second and third terms on the
right-hand side of (3.5) and rearranging, we find

u(x0) = uB,1(x0) − 1

8πµ1
S(x0,�f D;D1,D2) + µ1 − µ2

8πµ1
D(x0, u;D1) + µ1 − µ3

8πµ1
D(x0, u;D2). (3.8)

Now taking the limit as the field point x0 approaches the surface of the first drop and rearranging, we derive the
integral equation

S(x0,�f D;D1;D2) − (µ1 − µ2) DPV(x0, u;D1) − (µ1 − µ3) D(x0, u;D2)

+ 4π(µ1 + µ2) u(x0) = 8πµ1u∞, (3.9)

where PV denotes the principal value of the double-layer integral. Taking also the limit as the field point x0

approaches the surface of the second drop and rearranging, we derive the integral equation

S(x0,�f D;D1,D2) − (µ1 − µ2) D(x0, u;D1) − (µ1 − µ3) DPV(x0, u;D2)

+ 4π(µ1 + µ3) u(x0) = 8πµ1u∞. (3.10)

These integral equations are accompanied by the condition of a specified force on each spherical drop.

3.1 Fourier expansion of the single-layer potential

The Cartesian components of the single-layer potential over an axisymmetric surface, R, take the form

S j (x0, f;R) =
∫∫
R

[
f j

(x̂2 + ŷ2 + ẑ2)1/2 + fx x̂ + fy ŷ + fz ẑ

(x̂2 + ŷ2 + ẑ2)3/2 (x − x0) j

]
dS(x)

=
∫∫
R

[
f j

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)1/2

+ fx x̂ + fσ (σ − σ0 cos ϕ̂) + fϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)3/2

(x − x0) j

]
dS(x), (3.11)
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where x̂ = x − x0. The associated cylindrical polar components are⎡
⎣ Sx

Sσ

Sϕ

⎤
⎦ (x0, f;R) =

∫∫
P

1

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)1/2

⎡
⎣ fx

fσ cos ϕ̂ − fϕ sin ϕ̂

fσ sin ϕ̂ + fϕ cos ϕ̂

⎤
⎦

+ fx x̂ + fσ (σ − σ0 cos ϕ̂) + fϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)3/2

×
⎡
⎣ x̂

σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ dS(x). (3.12)

Substituting the Fourier expansion (2.39), performing the integration with respect to the meridional angle, ϕ, and
simplifying, we find

Sα(x0) =
2∑

m=0

∫
C

⎡
⎣ Pxxm cos(mϕ0) Pxσm cos(mϕ0) Pxϕm sin(mϕ0)

Pσ xm cos(mϕ0) Pσσm cos(mϕ0) Pσϕm sin(mϕ0)

Pϕxm sin(mϕ0) Pϕσm sin(mϕ0) Pϕϕm cos(mϕ0)

⎤
⎦ ·

⎡
⎣ Fc

xm
Fc

σm
Fc

ϕm

⎤
⎦

+
⎡
⎣ Pxxm sin(mϕ0) Pxσm sin(mϕ0) −Pxϕm cos(mϕ0)

Pσ xm sin(mϕ0) Pσσm sin(mϕ0) −Pσϕm cos(mϕ0)

−Pϕxm cos(mϕ0) −Pϕσm cos(mϕ0) Pϕϕm sin(mϕ0)

⎤
⎦ ·

⎡
⎣ F s

xm
F s

σm
F s

ϕm

⎤
⎦ dl(x), (3.13)

where C is the trace of R is a meridional plane. The dimensionless single-layer kernels, Pαβγ , are given in Appen-
dix A.

3.2 Fourier expansion of the double-layer potential

The Cartesian components of the double-layer potential over an axisymmetric surface, R, take the form

D j (x0, u, P) = −6
∫∫

P

ux x̂ + uy ŷ + uz ẑ

(x̂2 + ŷ2 + ẑ2)5/2
(x − x0) j (x − x0) · n(x) dS(x)

= −6
∫∫

P

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)5/2

(x − x0) j G dS(x), (3.14)

where G = nx x̂ + nσ (σ − σ0 cos ϕ̂). The associated cylindrical polar components are⎡
⎣ Dx

Dσ

Dϕ

⎤
⎦ (x0, u;R) = −6

a

∫∫
P

ux x̂ + uσ (σ − σ0 cos ϕ̂) + uϕ σ0 sin ϕ̂

(x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ϕ̂)5/2

⎡
⎣ x̂

σ cos ϕ̂ − σ0

σ sin ϕ̂

⎤
⎦ G dS(x). (3.15)

Substituting (2.35), performing the integration with respect to the meridional angle, ϕ and simplifying, we find

Dα(x0) =
2∑

m=0

∫
C

⎡
⎣ Rxxm cos(mϕ0) Rxσm cos(mϕ0) Rxϕm sin(mϕ0)

Rσ xm cos(mϕ0) Rσσm cos(mϕ0) Rσϕm sin(mϕ0)

Rϕxm sin(mϕ0) Rϕσm sin(mϕ0) Rϕϕm cos(mϕ0)

⎤
⎦ ·

⎡
⎣ Uc

xm
Uc

σm
Uc

ϕm

⎤
⎦

+
⎡
⎣ Rxxm sin(mϕ0) Rxσm sin(mϕ0) −Rxϕm cos(mϕ0)

Rσ xm sin(mϕ0) Rσσm sin(mϕ0) −Rσϕm cos(mϕ0)

−Rϕxm cos(mϕ0) −Rϕσm cos(mϕ0) Rϕϕm sin(mϕ0)

⎤
⎦ ·

⎡
⎣ U s

xm
U s

σm
U s

ϕm

⎤
⎦ dl(x), (3.16)

The double-layer kernels, Rαβγ , are given in Appendix B.

3.3 One-dimensional integral equations

Substituting the Fourier expansions of the hydrodynamic potentials and other flow variables in the integral equa-
tions (3.9) and (3.10) and collecting corresponding Fourier coefficients, we derive three decoupled systems of
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integral equations for m = 0, 1, 2 that can be solved separately and in isolation. In practice, depending on the
flow configuration and specific objectives of the computation, only a subset of these equations may need to be
solved.

3.4 Integral equations for the zeroth-order Fourier coefficients

For m = 0, we derive the integral equation

∫
C1,C2

Pαβ0 �Fβ0 dl − (µ1 − µ2)

PV∫
C1

Rαβ0 Uβ0 dl

−(µ1 − µ3)

∫
C2

Rαβ0 Uβ0 dl + 4π(µ1 + µ2)Uα0 = 8πµ1U∞
α0 (3.17)

for a point that lies at the first drop contour, and the integral equation∫
C1,C2

Pαβ0 �Fβ0 dl − (µ1 − µ2)

∫
C1

Rαβ0 Uβ0 dl

−(µ1 − µ3)

PV∫
C2

Rαβ0 Uβ0 dl + 4π(µ1 + µ3)Uα0 = 8πµ1U∞
α0 (3.18)

for a point that lies at the second drop contour, where

U∞
x0 = v∞

x + M11x, U∞
σ0 = 1

2
(M22 + M33) σ, U∞

ϕ0 = 1

2
(M23 − M32) σ, (3.19)

Inspecting the kernels, we find that this system can be further decomposed into a first subsystem of two integral
equations for the axial (x) and radial (σ ) components of the traction, and a second subsystem of one integral equation
for the meridional (ϕ) component of the traction. Physically, the first subsystem describes axisymmetric uniaxial,
biaxial, or two-dimensional straining flow, and the second subsystem describes a contrived swirling flow expressing
rigid-body rotation.

Implementing the interfacial conditions (2.36) and (2.42) in the first subsystem, we derive integral equations for
�Fr0 and Uθ0. For a point that lies at the contour of the first drop, we find

∫
C1,C2

(Pαx0 nx + Pασ0 nσ )�Fr0 dl + (µ1 − µ2)

PV∫
C1

(Rαx0 nσ − Rασ0 nx )Uθ0 dl

+ (µ1 − µ3)

∫
C2

(Rαx0 nσ − Rασ0 nx )Uθ0 dl − (µ1 − µ2) v(1)
x

PV∫
C1

(Rαx0 nx + Rασ0 nσ ) nx dl

− (µ1 − µ3) v(2)
x

∫
C2

(Rαx0 nx + Rασ0 nσ ) nx dl

+ 4π (µ1 + µ2)
[

δαx (n
2
xv

(1)
x − Uθ0 nσ ) + δασ nx (nσ v(1)

x + Uθ0)
]

= 8πµ1 U∞
α0, (3.20)

where α = x, σ . For a point that lies at the contour of the second drop, we find∫
C1,C2

(Pαx0 nx + Pασ0 nσ )�Fr0 dl + (µ1 − µ2)

∫
C1

(Rαx0 nσ − Rασ0 nx )Uθ0 dl
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+(µ1 − µ3)

PV∫
C2

(Rαx0 nσ − Rασ0 nx )Uθ0 dl − (µ1 − µ2) v(1)
x

∫
C1

(Rαx0 nx + Rασ0 nσ ) nx dl

−(µ1 − µ3)v
(2)
x

PV∫
C2

(Rαx0 nx + Rασ0 nσ ) nx dl + 4π (µ1 + µ2) [ δαx (n2
xv

(2)
x − Uθ0 nσ )

+δασ nx (nσ v(2)
x + Uθ0)] = 8πµ1 U∞

α0, (3.21)

where α = x, σ . The x components of the drop translational velocities are computed to ensure that the x component
of the force exerted on each drop has a specified value, according to the first equation in (2.43).

The solution of the integral equations for the normal jump in the traction, �Fr0, is not unique. Any solution can
be uniformly shifted by an arbitrary constant to yield another acceptable solution. In computing the deformed drop
shape from the curvature, the value of this constant is fixed so that the volume of the deformed drop is preserved to
leading order with respect to the capillary number.

3.5 Integral equations for the first- and second-order Fourier coefficients

Substituting the Fourier expansions for m = 1, 2 in the integral equations (3.9) and (3.10), and enforcing the
interfacial condition for the disturbance interfacial traction, we derive a further system of integral equations. For a
point that lies at the first drop contour, the integral equations corresponding to the cosine Fourier coefficients yield

∫
C1,C2

(Pαxmnx + Pασmnσ ) �Fc
rm dl − (µ1 − µ2)

PV∫
C1

(Rαβm Uc
βm − Rαϕm U s

ϕm) dl

−(µ1 − µ3)

∫
C2

(Rαβm Uc
βm − Rαϕm U s

ϕm) dl + 4π (µ1 + µ2)Uc
αm = 8πµ1 Uc∞

αm , (3.22)

and∫
C1,C2

(Pϕxmnx + Pϕxmnσ ) �Fc
rm dl − (µ1 − µ2)

PV∫
C1

(Rϕβm Uc
βm + Rϕϕm U s

ϕm) dl

−(µ1 − µ3)

∫
C2

(Rϕβm Uc
βm + Rϕϕm U s

ϕm) dl + 4π (µ1 + µ2)U s
ϕm = 8πµ1 U s∞

ϕm , (3.23)

where α, β = x, σ . The integral equations corresponding to the sine Fourier coefficients yield the corresponding
equations

∫
C1,C2

(Pαxmnx + Pασmnσ ) �F s
rm dl − (µ1 − µ2)

PV∫
C1

(Rαβm U s
βm + Rαϕm Uc

ϕm) dl

− (µ1 − µ3)

∫
C2

(Rαβm U s
βm + Rαϕm Uc

ϕm) dl + 4π (µ1 + µ2)U s
αm = 8πµ1 U s∞

αm , (3.24)

and∫
C1,C2

(Pϕxmnx + Pϕxmnσ ) �F s
rm dl − (µ1 − µ2)

PV∫
C1

(Rϕβm U s
βm − Rϕϕm Uc

ϕm) dl

−(µ1 − µ3)

∫
C2

(Rϕβm U s
βm − Rϕϕm Uc

ϕm) dl − 4π (µ1 + µ2)Uc
ϕm = −8πµ1 Uc∞

ϕm , (3.25)
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where α, β = x, σ . Equations 3.24 and 3.25 arise from 3.22 and 3.23 by replacing the cosine with the sine coeffi-
cients, and vice versa, and then flipping the sign of the cosine coefficients. A similar system of equations is written
at a point that lies at the second drop contour. The forcing terms on the right-hand sides are given by

Uc∞
x1 = M21 σ, Uc∞

σ1 = v∞
y + M12 x, Uc∞

ϕ1 = v∞
z + M13 x,

U s∞
x1 = M31 σ, U s∞

σ1 = v∞
z + M13 x, U s∞

ϕ1 = −v∞
y − M12 x,

(3.26)

for the first Fourier coefficients, and

Uc∞
x2 = 0, Uc∞

σ2 = 1

2
(M22 − M33) σ, Uc∞

ϕ2 = 1

2
(M23 + M32) σ,

U s∞
x2 = 0, U s∞

σ2 = 1

2
(M23 + M32) σ, Uc∞

ϕ2 = −1

2
(M22 − M33) σ,

(3.27)

for the second Fourier coefficients. The unknowns are the normal components of the traction jump, �Frm , the tan-
gential azimuthal and meridional velocities, Uθm and Uϕm , and the y- and z-components of the drop center velocities
involved in the system for m = 1. The drop velocities are computed to ensure that the y- and z-components of the
force have specified values according to the second and third equations in (2.43).

3.6 Fluids with equal viscosities

When all fluid viscosities are equal, the integral equations for the cosine and sine coefficients are decoupled. For a
point that lies at the first or second drop contour, we find∫
C1,C2

(Pαxmnx + Pασmnσ ) �Fc
rm dl + 8πµ1 Uc

αm = 8πµ1 Uc∞
αm (3.28)

and∫
C1,C2

(Pαxmnx + Pασmnσ ) �F s
rm dl + 8πµ1 U s

αm = 8πµ1 U s∞
αm , (3.29)

where α = x, σ . Implementing the boundary conditions (2.37) for m = 1, we find∫
C1,C2

(Pαx1nx + Pασ1nσ ) �Fc
r1 dl

+ 8πµ1 [δαx nσ (nxv
(1)
y − Uc

θ1) + δασ (n2
σ v(1)

y + nx Uc
θ1) + (δαϕ Uc

ϕ1)] = 8πµ1 Uc∞
αm (3.30)

and∫
C1,C2

(Pαx1nx + Pασ1nσ ) �F s
r1 dl

+ 8πµ1 [δαx nσ (nxv
(1)
z − U s

θ1) + δασ (n2
σ v(1)

z + nx U s
θ1) + (δαϕ U s

ϕ1)] = 8πµ1 U s∞
αm (3.31)

for a point that lies at the first drop contour. Note that the meridional component of the interfacial velocity, Uϕm ,
is not involved. A similar set of equations are written for a point that lies at the second drop contour involving the
second drop velocities. Cursory inspection reveals that the integral equations for the first-order cosine coefficients
for α = x and σ , also involving the y-components of the drop center velocities, are decoupled from any other
equations. Similarly, the integral equations for the first-order sine coefficients for α = x and σ , also involving the
z-components of the drop center velocity, are decoupled from any other equations.

123



366 C. Pozrikidis

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Y/a

X
/a

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3(b)(a)

Y/a

X
/a

Fig. 2 Adaptive distribution of collocation points along the contours of two intercepting spherical drops according to the interfacial
gap in a uniaxial extensional flow, and b simple shear flow. The dots trace the drop center trajectories

4 Numerical methods

To solve the integral equations derived in Sect. 3, we divide the particle contours in the ϕ = 0 meridional plane into
circular elements and approximate the unknown Fourier coefficients with constant functions over each element. For
best accuracy, the elements are concentrated near the axis of symmetry so that their length increases geometrically
with distance from the axis of symmetry, shown in Fig. 2. Given the number of elements, the element stretch ratio
is determined by r -adaptation, so that the size of the element in the middle of the interfacial gap is comparable to
the gap size. Applying point collocation at the midpoint of each element, we generate systems of linear equations
for the unknown solution vector including element values of the unknown Fourier coefficients and the Cartesian
components of the drop translational velocities. The integrals over the boundary elements determining the influ-
ence coefficients are computed using the six-point Gauss–Legendre quadrature. The logarithmic singularities of the
singular elements are subtracted out and computed analytically over the circular segments.

4.1 Zeroth-order Fourier coefficients

The structure of the coefficient matrix corresponding to the zero-order integral equations (3.20) and (3.21) is depicted
in Fig. 3a for fluids with the same viscosity, and in Fig. 3b for fluids with arbitrary viscosities. The unknown solu-
tion vector consists of boundary-element values over the first drop (A) and second drop (B), accompanied by the
x-components of the drop center velocities arranged in the following order:

[(�Fr0)A (�Fr0)B | (Uθ0)A (Uθ0)B | (vx )A | (vx )B]. (4.1)

The last two equations set a value for the x-component of the force on each drop.

4.2 First and second-order Fourier coefficients for equal viscosities

The structure of the coefficient matrix corresponding to the integral equations for the first-order cosine or sine Fou-
rier coefficients expressed by (3.30) or (3.31) for fluids with equal viscosity is identical to that depicted in Fig. 3a. In
fact, the coefficient matrices for the cosine and sine Fourier coefficients, but not the right-hand sides, are identical.
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(c) (d)

(a) (b)

Fig. 3 Structure of the coefficient matrix corresponding to the integral equations for the constant Fourier coefficients for fluids with a
equal viscosity, and b arbitrary viscosity. c, d Structure of the coefficient matrix corresponding for the first- and second-order Fourier
coefficients for fluids with arbitrary viscosities. The vertical dashed lines demarcate blocks with element values for drop A or B. The
horizontal dashed lines demarcate integral equations and force constraints for collocation points on sphere A or B

The unknown solution vector for the cosine coefficients consists of boundary-element values accompanied by the
y-components of the drop center velocities arranged in the following order:

[(�Fc
r1)A (�Fc

r1)B | (Uc
θ1)A (Uc

θ1)B | (vy)A | (vy)B]. (4.2)

The last two equations enforce the condition of zero y-component of the force on each particle. The unknown
solution vector for the sine coefficients consists of boundary-element values accompanied by the z-components of
the drop center velocities arranged in the following order:

[(�F s
r1)A (�F s

r1)B | (U s
θ1)A (U s

θ1)B | (vz)A | (vz)B]. (4.3)

The last two equations enforce the condition of zero z-component of the force on each particle.

4.3 First and second-order Fourier coefficients for arbitrary viscosities

The structure of the coefficient matrix corresponding to the integral equations for the first-order cosine and sine
Fourier coefficients for fluids with arbitrary viscosities is depicted in Fig. 3c. The unknown solution vector consists
of boundary-element values accompanied by the y- and z-components of the drop center velocities arranged in the
following order:
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[(�Fc
r1)A (�Fc

r1)B | (Uc
θ1)A (Uc

θ1)B | (vy)A | (vy)B |
(�F s

r1)A (�F s
r1)B | (U s

θ1)A (U s
θ1)B | (vz)A | (vz)B |

(Uc
ϕ1)A (Uc

ϕ1)B | (U s
ϕ1)A (U s

ϕ1)B]. (4.4)

Four equations enforce the condition of zero y- and z-components of the force on each drop. The first diagonal block
is identical to the second diagonal block, and the northeastern off-diagonal block is the negative of the southwestern
off-diagonal block. The hatched blocks depicted in Fig. 3c become null when the fluid viscosities are equal, and
this allows the decoupling of the diagonal blocks, as shown in Fig. 3a.

The structure of the coefficient matrix corresponding to the integral equations for the second-order cosine and
sine Fourier coefficients for fluids with arbitrary viscosities is depicted in Fig. 3d. The unknown solution vector
consists of boundary-element values arranged in the following order:

[(�Fc
r2)A (�Fc

r2)B | (Uc
θ2)A (Uc

θ2)B | (�F s
r2)A (�F s

r2)B |
(U s

θ2)A (U s
θ2)B | (Uc

ϕ1)A (Uc
ϕ1)B | (U s

ϕ1)A (U s
ϕ1)B]. (4.5)

The solution does not involve, and is independent of the drop center velocities.

4.4 Drop motion

The equations of (2.33) governing the droplet motion were integrated in time using the second-order Runge–Kutta
method. When the particle gap is small, large lubrication forces develop rendering the differential equations stiff
and raising the possibility of unnatural collision and artificial overlap at a finite time. To ensure a regular behavior,
the time step is adjusted according to the particle gap, ε, and the relative particle velocity in the laboratory frame,
as �t =ωε/|VA − VB |, where ω is a numerical coefficient. This time step is accepted only if it is lower than a
specified value, �t0, used for well-separated particles.

5 Stresslet and particle stress tensor

The disturbance flow far from the droplets is induced by a stresslet with strength

si j = 1

2

∫∫
D1

[xi � f D
j + x j � f D

i − 2 (µ1 − µ2) (ui n j + u j ni ) ] dS

+1

2

∫∫
D2

[xi � f D
j + x j � f D

i − 2 (µ1 − µ3) (ui n j + u j ni ) ] dS; (5.1)

e.g., [15, p. 48]. Note that, in the case of freely convected droplets, the integral remains unchanged when the origin
is shifted to a new location. In compact form,

si j = Ji j (�f D;D1,D2) − 2

a
(µ1 − µ2)Ji j (u;D1) − 2

δa
(µ1 − µ3)Ji j (u;D2), (5.2)

where

Ji j (f;R) = 1

2

∫∫
R

(ni f j + n j fi ) dS. (5.3)
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Substituting the Fourier expansions and performing the integration with respect to the meridional angle, ϕ, we
obtain

Jxx (f;R) = 2π

∫
C

x̃ Fx0 σ dl, Jxy(f) = π

2

∫
C

[̃x (Fc
σ1 − F s

ϕ1) + σ Fc
x1] σ dl,

Jxz(f;R) = π

2

∫
C

[̃x (F s
σ1 + Fc

ϕ1) + σF s
x1] σ dl,

Jyy(f;R) = π

∫
C

(Fσ0 + 1

2
Fc

σ2 − 1

2
F s

ϕ2) σ 2 dl, (5.4)

Jyz(f;R) = π

2

∫
C

(Fc
ϕ2 + F s

σ2) σ 2 dl,

Jzz(f;R) = π

∫
C

(Fσ0 − 1

2
Fc

σ2 + 1

2
F s

ϕ2) σ 2 dl,

where C is the contour of the spherical surface R in a meridional plane, x̃ = x − xc, and xc is the axial position
of the spherical surface. These expressions reveal that the off-diagonal components of the stresslet depend on the
zeroth and first Fourier coefficients, while the diagonal components depend on the zeroth, first and second Fourier
coefficients.

Using the rules of tensor transformation, we find that the stresslet in the laboratory frame is given by

S = A · s · AT . (5.5)

The dimensionless particle stress tensor is defined as

� p = 1

µ1k4π(Vp1 + Vp2)
S, (5.6)

where k is an appropriate constant shear or extensional rate, and Vp1, Vp2 are the particle volumes.
Batchelor [16] showed that the effective stress tensor of a suspension of force-free spherical particles or liquid

droplets freely convected in infinite linear flow is given by

�eff = µ1

(
2 E∞ + 1

V
S
)

, (5.7)

where E∞ is the rate-of-deformation tensor of the linear flow, and S is the stresslet computed over the surfaces of
all particles in a given volume, V . In the limit of infinite dilution, S � n S1, where S1 is the stresslet computed
over the surface of one particle, and n is the particle number density defined as the number of particles in the given
volume V , divided by V . Thus,

�eff � µ1

(
2 E∞ + n

V
S1

)
≡ µ1 (2 E∞ + ck � p1), (5.8)

where c = nVp is the particle volume fraction;

� p1 ≡ 1

µ1kVp
S1 (5.9)

is the one-particle stress tensor and Vp is the volume of one particle. A detailed calculation shows that

� p1 = α1

k
2E∞, (5.10)

and thus

�eff � µ1 (1 + α1 c) 2E∞, (5.11)
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where α1 is a constant. Thus, a dilute suspension of spherical particle behaves like a Newtonian fluid with elevated
viscosity. For rigid particles with no-slip surfaces, Einstein [17] calculated α1 = 5/2. For spherical drops enclosing
a fluid with viscosity λµ1, Taylor [14] calculated

α1 = 1

2

5λ + 2

λ + 1
. (5.12)

The Einstein value arises in the limit λ → ∞.

6 Droplet interception in uniaxial extensional flow

In the case of axisymmetric uniaxial extensional flow where the fluid approaches the origin along the X -axis and
departs along the Y - and Z -axes, the velocity components in the laboratory frame are U∞

X = −2k X , U∞
Y = kY ,

and U∞
Z = k Z , and the associated velocity gradient tensor is

L = k

⎡
⎣−2 0 0

0 1 0
0 0 1

⎤
⎦, (6.1)

where k is a constant rate of extension with dimensions of inverse time. In this section, we consider situations where
the drops are placed and convected along the X -axis toward the origin in a collision course.

Figure 4 shows results of computations for two identical drops with the same viscosities, δ = 1 and µ2 = µ3,
positioned symmetrically with respect to the origin, X B = −X A. The left column shows graphs of the lower drop
center velocity plotted against the interfacial gap scaled by the drop radius, ξ = ε/a, on a log-log scale. Results
are shown for three viscosity ratios, λ ≡ µ2/µ1 = µ3/µ1 = 0.01, 1, and 100. The various symbols correspond
to simulations with an increasing number of boundary elements adaptively distributed over the spherical interfaces
according to the interfacial gap, as discussed in Sect. 4. The finest computation with 128 boundary elements along
each drop contour produces accurate results for gaps as small as 10−4 times the drop radius. When the fluid vis-
cosities are equal, the finest simulation requires less than one hour of CPU time on a high-end personal computer.
When the fluid viscosities are different, the finest simulation requires several hours of CPU time.

The initial stage of the motion for remote drops involves weak far-field hydrodynamic interactions where the
drops act like potential and point-force dipoles. The second stage of the motion for closely spaced drops is dominated
by strong hydrodynamic interactions. Given the drop center position, the drop velocity monotonically increases as
the drop viscosity is raised and reaches a maximum when the drops reduce to rigid particles. As the interfaces tend
to touch, the drop center velocity evolves according to the scaling law Vx � kac ξm , where m is a positive exponent
strongly dependent on the viscosity ratio, λ, and c is a constant. Thus, as the interfaces touch, the drop collision
velocity tends to zero.

The slope of the dotted line in each frame of the left column of Fig. 4 is equal to unity. The results reveal that
the exponent m is less than unity for any finite value of λ, and tends to the value of unity in the limit of spherical
solid particles as λ tends to infinity. These observations will be supported by independent evidence discussed later
in this section. Integrating the equation dξ/d(kt) = −c ξm , we find that, if m = 1, the gap decreases exponentially
in time and closes after an infinite collision time; whereas, if m < 1, the gap closes after a finite collision time.
These considerations confirm that spherical drops and bubbles coalesce after a finite evolution time, whereas rigid
particles never touch. However, strong lubrication forces develop for small interfacial gaps on the order of Ca, as
shown in Fig. 5a, and the assumption of a perfectly spherical shape ceases to be accurate after a certain stage during
the interception. In practice, the drops coalesce when the minimum film thickness between the spherical interfaces
is below a threshold where attractive intermolecular forces arise leading to rupture.

The deformation of the interfaces to leading-order with respect to the capillary number is described by the func-
tion φ(θ) introduced in Sect. 2, defined such that the drop radius is r = R [1 + Ca φ(θ)]. In the case of uniaxial
extensional flow, the function φ(θ) satisfies the ordinary differential equation

d2φ

dθ2 + cot θ
dφ

dθ
+ 2φ = − R

µ1U
�Fr0 + c, (6.2)
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Fig. 4 Two identical drops with the same viscosity collide in uniaxial extensional flow. The graphs illustrate the dependence of the
axial drop center velocity (left), axial particle mobility coefficient, A (middle), and xx-component of the particle stress tensor (right),
on the scaled interfacial gap, ξ , for a λ ≡ µ2/µ1 = µ3/µ1 = 0.01, b λ = 1, and c λ = 100. The dots, circles, squares, diamonds, and
crosses correspond, respectively, to 16, 32, 64, and 128 elements around each spherical interface. The slope of the dotted lines in the
left frames is equal to unity. The dashed horizontal lines in the right frames represent the Taylor value for a solitary drop

originating from (2.19), subject to the boundary condition dφ/dθ = 0 at θ = 0 and π . In light of the non-uniqueness
of the integral equations for �Fr0, the constant c is adjusted so that the drop volume is preserved to leading order
with respect to Ca, by requiring

π∫
0

φ(θ) sin3 θ dθ = 0. (6.3)

Equation 6.2 was solved using a standard second-order finite-difference method on a grid defined by the bound-
ary-element nodes. Deformed interfacial profiles for an arbitrary capillary number are shown in Fig. 5b. A familiar
axisymmetric dimple develops at the point of contact identified as a lubrication zone.

A dimensionless axial relative mobility coefficient can be defined in terms of the scaled difference between the
actual drop velocity and the velocity of the extensional flow evaluated at the instantaneous drop center,

A = 1 + VX

2k X
. (6.4)
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Fig. 5 a Interception of two identical drops with the same viscosity in uniaxial extensional flow: distribution of the jump in the interfacial
traction scaled by kµ1, plotted with respect to arc length measured around the drop contour for interfacial gap ξ = 0.1 (dashed line) and
0.01 (solid line). b Deformed interfacial profiles for ξ = 0.01 and Ca = 0.01

Fig. 6 Dependence of the
dimensionless axial relative
mobility coefficient, A, on
the scaled gap between two
identical drops, ξ , for
viscosity ratio λ = 0.01
(circles), 1 (squares), and
100 (diamonds). The crosses
represent data of Batchelor
and Green [2], and the
dashed lines represent a
numerical approximation
for solid spherical particles
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As the distance between the drops becomes larger, hydrodynamic interactions become increasingly weak and A
tends to zero. In the opposite limit where the gap tends to zero, the drop velocity tends to zero and A tends to unity.
Graphs of the function A(ξ) are shown in the middle column of Fig. 4 for several discretization levels and three
viscosity ratios, and a summary of the most accurate results is given in Fig. 6. The boundary-integral computations
are in excellent agreement with results presented in [9, Fig. 2c], obtained by asymptotic and functional expansion
methods. The results for λ = 100 are in excellent agreement with data given in [2, Table 1] for solid particles
represented by the crosses, corresponding to infinite viscosity ratio.

Da Cunha and Hinch [18] provide approximate expressions for the function A in the case of identical solid
particles. In the far field, r ≥ 2.5,

A = 5

r3 − 8

r5
+ 25

r6 − 35

r8 + 125

r9 − 102

r10 + 12.5

r11 + 430

r12 . (6.5)

In the intermediate regime, 2.01 < r < 2.5,

A = −4.3833 + 17.7176

r
+ 14.8204

r2 − 92.4471

r3 − 46.3151

r4 + 232.2304

r5
. (6.6)

In the lubrication regime, 2 < r ≤ 2.01,

A = 16.3096

r
− 7.1548, (6.7)
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where r = 2+ξ is the scaled distance between the particle centers. The predictions of these formulas are represented
by the dashed line in Fig. 6 and in the middle frame of Fig. 4c. As ξ tends to zero, A � 1− 1

2 8.3096 ξ , and VX ∼ ξ ,
in agreement with the numerical results presented in the left frame of Fig. 4c.

The right column in Fig. 4 shows graphs of the xx-component of the particle stress tensor plotted against the
interfacial gap on a log-linear scale. The results show that the particle stress tensor increases monotonically from
the Taylor value α1 given in (5.12) for well separated particles represented by the horizontal lines, to a higher finite
value in the limit of vanishing gap. The limiting value for zero gap is at least twice the Taylor value for all viscosity
ratios. Thus, drop interception considerably increases the effective extensional viscosity of a dilute suspension.

7 Droplet interception in simple shear flow

In the case of simple shear flow along the Y -axis with velocity varying linearly along the X -axis, the velocity
components in the laboratory frame are U∞

X = 0, U∞
Y = k X , and U∞

Z = 0, and the associated velocity gradient
tensor is

L = k

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦, (7.1)

where k is the shear rate. Making substitutions, we derive the streaming component of the incident flow in the
droplet doublet frame,

v∞
x = AY x X (1)

c , v∞
y = AY y X (1)

c , v∞
z = AY z X (1)

c , (7.2)

and the associated velocity gradient tensor,

MT = k

⎡
⎣ AY x AX x AY x AX y AY x AXz

AY y AX x AY y AX y AY y AXz

AY z AX x AY z AX y AY z AXz

⎤
⎦ = k r2 ⊗ r1, (7.3)

where r1 and r2 are the first and second rows of A. When the axis connecting the drop centers lies in the XY -plane,
yielding a flow with planar symmetry, we set AZ x = 0 for the first unit vector, AX y = −AY x , AY y = AX x , AZ y = 0
for the second unit vector, and AXz = 0, AY z = 0, AZz = 1 for the third unit vector, and find that the last row and
column of the matrix M are zero. Accordingly,

MT = k

⎡
⎣ M11 M12 − 1 0

M12 −M11 0
0 0 0

⎤
⎦ (7.4)

and

u∞
x = v∞

x + k M11 x + k(M12 − 1) y, u∞
y = v∞

y + k M12 x − k M11 y, u∞
z = 0, (7.5)

where M11 = AX x AY x and M12 = A2
X x .

To develop insight into the drop motion and simultaneously assess the performance of the numerical method,
we consider the interception of two identical drops whose viscosity is equal to that of the ambient fluid, µ2 =
µ3 = µ1. At the initial instant, the drop centers reside in the XY -plane at positions XA = (0.75,−3, 0)a and
XB = (−0.75, 3, 0)a. Figure 7a shows the trajectories of the drop centers in the XY -plane computed using far-field
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Fig. 7 a Trajectories of two identical drops with the same viscosity in the XY -plane for initial drop center position XA = (0.75,−3, 0)a
and XB = (−0.75, 3, 0)a. b Streamwise drop velocities, and c adaptive evolution of the time step according to the inter-particle gap.
d, e Evolution of the gap between the interfaces plotted on a logarithmic or linear scale. f Evolution of the shearing component of the
particle stress tensor. The dotted, dot-dashed, dashed, and solid lines represent the results of computations with 16, 32, 64, and 128
boundary elements around each drop contour in a meridional plane

time step k�t0 = 0.10 and relaxation parameter ω = 0.5. Drop contours at an arbitrary time instant are shown to
demonstrate the close proximity of the interfaces. The hardly distinguishable dotted, dot-dashed, dashed, and solid
lines represent the results of computations with 16, 32, 64, and 128 boundary elements around each drop contour
in a meridional plane. The results reveal that the drops intercept, nearly collide, rotate as a doublet about the origin,
and then separate to resume their rectilinear path. A net lateral displacement does not occur due to reversibility
of Stokes flow. Figure 7b shows that, in fact, the drops accelerate in the streamwise direction as they are pushed
upward or downward during the interception.

Very small gaps separate the interfaces during the interception, requiring correspondingly small time steps, as
shown in Fig. 7c. Figure 7d and e describes the evolution of the minimum gap between the interfaces. The results
uniformly converge as the number of boundary elements is doubled. The interfacial gap is drastically reduced by
nearly two orders of magnitude as the drops nearly collide. The minimum gap occurs in the vertical orientation
along the X -axis and is on the order of 10−3 times the drop radius. The calculation with 64 boundary elements
accurately describes the drop motion at near contact. Figure 7f describes the evolution of the shearing component of
the particle stress tensor expressing the contribution of the drops to the effective viscosity of the suspension. When
the drops are well-separated, we obtain Taylor’s value for solitary drops, �

p1
XY = 1.75. It is interesting that particle

interception causes strong oscillations that may temporarily reduce the effective viscosity of the suspension below
the single-particle value corresponding to infinite dilution.

Figure 8 describes the evolution of the gap and shearing component of the particle stress tensor for two identical
drops with unit viscosity ratio initially positioned at YA = −3a and YB = 3a, and three initial lateral positions,
YA = −YB = 0.70a, 0.75a, and 0.80a. In Fig. 8a, the logarithm of the gap is plotted against the longitudinal
position of the first particle, YA. The simulations demonstrate that, when the initial offset is sufficiently small, the
interfaces come in contact after a finite evolution time, in agreement with the results of Wang et al. [9]. Figure 8b
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Fig. 8 a Effect of the initial lateral drop position on the evolution of the minimum gap between two spherical drops intercepting in
the (X, Y ) plane, and b associated shearing component of the particle stress tensor. c Relative motion of two identical spherical solid
particles: initial particle center positions in the (X, Y ) plane symmetrically positioned with respect to the origin inside the shaded area
lead to closed particle trajectories. d Schematic illustration of the relative motion of two identical spherical liquid drops after Wang
et al. [9]. Drop whose centers are located in region A roll over one another following open trajectories; drops whose centers are located
in region B either collide or undergo a perpetual orbiting motion

shows that the particle stress tensor remains finite even when the interfaces come in contact. We conclude that drop
collision does not have a profound effect on the rheology of a dilute suspension.

Batchelor and Green [2] pointed out that two intercepting solid particles never collide, as strong lubrication
forces developing in narrow gaps resist normal motion. However, not all relative particle trajectories originate from
infinity, as illustrated in Fig. 8c for identical particles. Initial particle center positions symmetrically located with
respect to the origin inside the shaded area lead to closed trajectories where the particles exhibit a perpetual orbiting
motion. When the particle centers are initially located at the horizontal Y -axis, they spontaneously migrate off the
axis and nearly touch when they reach the vertical orientation along the X -axis, but never collide. Wang et al. [9]
found that the relative trajectories of spherical liquid drops involve a roll-over zone (A) and a collision zone (B)
where the interfaces come into physical contact, as illustrated in Fig. 8d. Closed trajectories representing a perpetual
orbiting motion may arise inside the collision zone depending the relative particle radii and viscosity.

Next, we consider a pair of identical drops with the same viscosity located along the X -axis and convected along
the Y -axis under the action of a simple shear flow. The dimensionless transverse relative mobility coefficient is
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Fig. 9 Dependence of the
dimensionless transverse
relative mobility coefficient,
B, on the scaled gap
between two identical
drops, ξ , for viscosity ratio
λ = 1 (circles), 5 (squares),
and 100 (diamonds). The
crosses represent data of
Batchelor and Green [2],
and the dashed lines
represent a numerical
approximation for spherical
solid particles. As ξ tends to
zero, A tends to a limit that
is less than unity in all cases
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B
defined in terms of the scaled difference between the actual drop velocity along the Y -axis, and the velocity of the
simple shear flow evaluated at the instantaneous drop center,

B ≡ 2

(
1 − VY

k X

)
. (7.6)

As the distance between the drops becomes larger, hydrodynamic interactions become weaker and B tends to zero.
In the opposite limit where the gap tends to zero, the drop velocity tends to a nonzero value and B tends to a
nonzero limit. Graphs of the function B(ξ) computed with 128 boundary elements plotted against the scaled gap,
ξ , are shown in Fig. 9. The results are in excellent agreement with graphs presented in [9, Fig. 3c], obtained by
asymptotic and functional expansion methods. Excellent agreement is also observed with data for spherical solid
particles provided by Batchelor and Green [2] corresponding to infinite viscosity ratio, represented by the crosses.
As ξ tends to zero, the function B tends to a finite value that is lower than unity for any viscosity ratio, including
infinity. Thus, solid particles and liquid drops are able to tangentially roll over one another and separate under the
action of a simple shear flow.

Da Cunha and Hinch [18] provide approximate expressions for the function B in the case of identical solid
particles. In the far field, r ≥ 2.5,

B = 1

3

(
16

r5
+ 10

r8 − 36

r10 − 25

r11 − 36

r12

)
, (7.7)

in the intermediate regime, 2.01 < r < 2.5,

B = −3.1918 + 12.3641

r
+ 11.4615

r2 − 65.2926

r3 − 36.4909

r4 + 154.8074

r5
, (7.8)

and in the lubrication regime, 2 < r ≤ 2.01,

B = 2

r

0.4056 log2 ξ − 1.49681 log ξ − 1.9108

log2 ξ − 6.04250 log ξ + 6.32549
, (7.9)
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where r = 2 + ξ is the scaled distance between the particle centers. As the gap ξ tends to zero, B tends to 0.4056.
The predictions of these approximations are shown with the dashed lines in Fig. 9.

8 Discussion

We have developed a numerical method for computing with high accuracy linear flow past a pair of spherical drops
with arbitrary radii and viscosity. A key step is the Fourier expansion of flow variables with respect to the meridional
angle measured around the axis connecting the particle centers at every instant. We have found that only the zeroth-
and first-order Fourier coefficients are necessary for computing the drop center velocities. The boundary-integral
formulation culminates in systems of one-dimensional integral equations that can be solved efficiently even for very
small interfacial gaps. We have presented sample numerical results to illustrate the performance of the method and
ensure agreement with the calculations of previous authors.

Batchelor and Green [2] demonstrated that the velocity of one freely suspended drop relative to the velocity of
a second freely suspended drop intercepting in linear flow is given by

VA − VB = �∞ × r + E∞ · r −
(A(s)

r2 rr + B(s)

r2 (r2 I − rr)
)

· E∞ · r, (8.1)

where r is the distance between the drop centers, s = 2r/[a(1 + δ)] is the scaled dimensionless distance, �∞ is
half the vorticity vector, and E∞ is the constant rate-of-deformation tensor of the linear flow. The dimensionless
axial and transverse relative mobility, functions A and B, are presented in Figs. 6 and 9. Asymptotic expressions and
accurate numerical values for A and B for spherical drops with the same viscosity were presented by Zinchenko,
Davis and coworkers over a wide range of interfacial separations, drop to ambient fluid viscosity ratios, and drop
radii ratios (e.g., [8]). The integral formulation proposed in this paper offers an alternative venue for evaluating these
functions for drops with the same or different viscosities. Once these functions are available in tabular or another
convenient form, studies of collision efficiency can be conducted with applications in flow-induced flotation and
flocculation.

In summary, the integral formulation developed in this work allows the computation of the absolute drop velocities
and particle stress tensor during the interception using relatively simple numerical methods.

Acknowledgement This research was supported by a grant provided by the National Science Foundation.

Appendix A: single-layer kernels

The dimensionless single-layer kernels, Pαβγ , are

Pαβ0 = σ

⎡
⎣ I10 + x̂2 I30 x̂ (σ I30 − σ0 I31) 0

x̂ (σI31 − σ0I30) I11 + (σ 2 + σ 2
0 ) I31 − σσ0 (I32 + I30) 0

0 0 2I11

⎤
⎦, (A.1)

Pαβ1 = σ

⎡
⎣ I11 + x̂2I31 x̂(σ I31 − σ0I32)

x̂(σ I32 − σ0I31) I12 + (σ 2 + σ 2
0 )I32 − σσ0 (I33 + I31)

x̂σ(I32 − I30) I12 − I10 + σ 2(I32 − I30) − σσ0 (I33 − I31)

x̂σ0(I32 − I30)

I10 − I12 + σ 2
0 (I30 − I32) − σσ0 (I31 − I33)

I12 + σσ0 (I31 − I33)

⎤
⎦, (A.2)
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and

Pαβ2 = σ

⎡
⎣ (2I12 − I10) + x̂2(2I32 − I30)

x̂σ (2I33 − I31) − x̂σ0 (2I32 − I30)

2x̂σ(I33 − I31)

x̂σ (2I32 − I30) − x̂σ0 (2I33 − I31)

2I13 − I11 + (σ 2 + σ 2
0 )(2I33 − I31) − σσ0 (2I34 + I32 − I30)

2(I13 − I11) + 2σ 2(I33 − I31) − 2σσ0 (I34 − I32)

2x̂σ0(I33 − I31)

2(I11 − I13) + 2σ 2
0 (I31 − I33) − 2σσ0 (I32 − I34)

(2I13 − I11) + σσ0 (−2I34 + 3I32 − I30)

⎤
⎦, (A.3)

where

Imn ≡
2π∫

0

cosn ω dω

[x̂2 + σ 2 + σ 2
0 − 2σσ0 cos ω]m/2

= 4wm

(4σσ0)m/2

π/2∫
0

(2 cos2 ω − 1)n

(1 − w2 cos2 ω)m/2 dω, (A.4)

and w2 = 4σσ0/[x̂2 + (σ + σ0)
2]. These integrals can be expressed in terms of complete elliptic integrals of the

first or second kind which and then evaluated either by iterative methods or by standard library functions.
When the point x0 lies at the surface of a sphere, as x → x0, σ → σ0 and θ → θ0, the diagonal components of

the single-layer kernels exhibit logarithmic singularities, where θ is the meridional angle. Detailed consideration
reveals

Pxx0 ∼ −2 log |θ̂ |, Pσσ0 ∼ −2 log |θ̂ |, Pϕϕ0 ∼ −4 log |θ̂ |,
Pxx1 ∼ −2 log |θ̂ |, Pσσ1 ∼ −2 log |θ̂ |, Pϕϕ1 ∼ −4 log |θ̂ |, (A.5)

Pxx2 ∼ −2 log |θ̂ |, Pσσ2 ∼ −2 log |θ̂ |, Pϕϕ2 ∼ −3.5 log |θ̂ |,
where θ̂ = θ − θ0.

Appendix B: double-layer kernels

The double-layer kernels, Rαβγ , are given by

Rαβ0 = −6σ

⎡
⎣ τ x̂2I50 − nσ σ0 x̂2I51

τ x̂(σI51 − σ0I50) − nσ σ0 x̂(σI52 − σ0I51)

0

τ x̂(σI50 − σ0I51) − nσ σ0 x̂(σI51 − σ0I52)

(τσ 2 + τσ 2
0 + nσ σσ 2

0 )I51 − nσ σ0(τ + σ 2 + σ 2
0 )I52 + nσ σσ 2

0 I53 − τσσ0I50

0

0
0

τσσ0(I50 − I52) − nσ σσ 2
0 (I51 − I53)

⎤
⎦, (B.1)

Rαx1 = −6σ

⎡
⎣ τ x̂2I51 − nσ σ0 x̂2I52

τ x̂(σ I52 − σ0I51) − nσ σ0 x̂(σ I53 − σ0I52)

τ x̂σ(I52 − I50) − nσ σσ0 x̂(I53 − I51)

τ x̂(σI51 − σ0I52) − nσ σ0 x̂(σI52 − σ0I53)

τ (σ 2 + σ 2
0 )I52 − τσσ0(I53 + I51) − nσ σ0(σ

2 + σ 2
0 )I53 + nσ σσ 2

0 (I54 + I52)

τσ 2(I52 − I50) − τσσ0(I53 − I51) − nσ σ 2σ0(I53 − I51) + nσ σσ 2
0 (I54 − I52)

τ x̂σ0(I52 − I50) − nσ σ 2
0 x̂(I53 − I51)

τσ 2
0 (I50 − I52) − τσσ0(I51 − I53) − nσ σ 3

0 (I51 − I53) + nσ σσ 2
0 (I52 − I54)

τσσ0(I51 − I53) − nσ σσ 2
0 (I52 − I54)

⎤
⎦, (B.2)
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and

Rαx2 = −6σ

⎡
⎢⎢⎣

τ x̂2(2I52 − I50) − nσ σ0 x̂2(2I53 − I51)

τ x̂σ(2I53 − I51) − τ x̂σ0 (2I52 − I50) − x̂nσ σσ0(2I54 − I52)

+x̂nσ σ 2
0 (2I53 − I51)

2τ x̂σ(I53 − I51) − 2x̂nσ σσ0(I54 − I52)

τ x̂σ(2I52 − I50) − τ x̂σ0(2I53 − I51) − nσ σσ0 x̂(2I53 − I51) + nσ σ 2
0 x̂(2I54 − I52)

τ (σ 2 + σ 2
0 )(2I53 − I51) − τσσ0(2I54 + I52 − I50)

−nσ σ0(σ
2 + σ 2

0 )(2I54 − I52) + nσ σσ 2
0 (2I55 + I53 − I51)

2τσ 2(I53 − I51) − 2τσσ0(I54 − I52) − 2nσ σ 2σ0(I54 − I52) + 2nσ σσ 2
0 (I55 − I53)

2τ x̂σ0(I53 − I51) − 2nσ σ 2
0 x̂(I54 − I52)

2τσ 2
0 (I51 − I53) − 2τσσ0(I52 − I54) − 2nσ σ 3

0 (I52 − I54) + 2nσ σσ 2
0 (I53 − I55)

τσσ0(−2I54 + 3I52 − I50) − nσ σσ 2
0 (−2I55 + 3I53 − I51)

⎤
⎦,

(B.3)

where τ = nx x̂ + nσ σ .
When the point x0 lies at the surface of a sphere, the components of the double-layer kernels exhibiting singular

behavior are

Rϕϕ0 ∼ 6

R
log |θ̂ |, Rϕϕ1 ∼ 5.5

R
log |θ̂ |, Rϕϕ2 ∼ 5

R
log |θ̂ |, (B.4)

where R is the sphere radius. All other entries exhibit a regular behavior. These logarithmic singularities are con-
sistent with the following ordering of principal-value integrals for the double-layer potential in Stokes flow: the
integrand of two-dimensional flow is discontinuous along the boundary contour at the singular point; the integrand
of axisymmetric flow corresponding to a Fourier expansion is logarithmically singular along the trace of the bound-
ary in a meridional plane; and the integrand of three-dimensional flow exhibits an integrable, simple pole (1/r )
singularity over a locally curved surface.
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